Materials and Fabrication




Optical characterization of epsilon-near-zero, epsilon-near-pole, and hyperbolic response in nanowire metamaterials

We report on the optical and physical characterization of metallic nanowire (NW) metamaterials fabricated by electrodeposition of ≈30nm diameter gold nanowires in nanoporous anodic aluminum oxide. We observe a uniaxial anisotropic dielectric response for the NW metamaterials that displays both epsilon-near-zero (ENZ) and epsilon-near-pole (ENP) resonances. We show that a fundamental difference in the behavior of NW metamaterials from metal-dielectric multilayer (ML) metamaterials is the differing directions of the ENZ and ENP dielectric responses relative to the optical axis of the effective dielectric tensor. In contrast to multilayer metamaterials, nanowire metamaterials exhibit an omnidirectional ENP and an angularly dependent ENZ. Also in contrast to ML metamaterials, the NW metamaterials exhibit ENP and ENZ resonances that are highly absorptive and can be effectively excited from free space. Our fabrication allows a large tunability of the epsilon-near-zero resonance in the visible and near-IR spectrum from 583 to 805 nm as the gold nanorod fill fraction changes from 26% to 10.5%. We support our fabrication process flow at each step with rigorous physical and optical characterization. Energy dispersive x-ray (EDX) and x-ray diffraction (XRD) analyses are used to ascertain the quality of electrochemically deposited Au nanowires prior to and after annealing. Our experimental results are in agreement with simulations of the periodic plasmonic crystal and also analytical calculations in the effective medium metamaterial limit. We also experimentally characterize the role of spatial dispersion at the ENZ resonance and show that the effect does not occur for the ENP resonance. The application of these materials to the fields of biosensing, quantum optics, and thermal devices shows considerable promise.







Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media

We observe unique absorption resonances in silver/silica multilayer-based epsilon-near-zero (ENZ) metamaterials that are related to radiative bulk plasmon-polariton states of thin-films originally studied by Ferrell (1958) and Berreman (1963). In the local effective medium, metamaterial description, the unique effect of the excitation of these microscopic modes is counterintuitive and captured within the complex propagation constant, not the effective dielectric permittivities. Theoretical analysis of the band structure for our metamaterials shows the existence of multiple Ferrell–Berreman branches with slow light characteristics. The demonstration that the propagation constant reveals subtle microscopic resonances can lead to the design of devices where Ferrell–Berreman modes can be exploited for practical applications ranging from plasmonic sensing to imaging and absorption enhancement.


Explore

Near Field Spin Photonics

    Our work led to a fundamental understanding of universal spin-momentum locking of light and near-field properties of light's polarization.

Spin-Momentum Locked Forces

    We introduced a universal right handed electromagnetic triplet consisting of electromagnetic momentum, decay and spin.

Quantum Gyro-Electric Phase of Matter

    We have predicted the existence of a new topological phase of matter exhibiting photon spin-1 quantization.